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A B S T R A C T   

Recent years have seen growing interests in developing and applying computer vision technologies to solve safety 
problems in the construction industry. Despite the technological advancements, there is no research that exams 
the theoretical links between computer vision technology and safety science and management. Thus, the ob
jectives of this paper are to: (1) investigate the current status of applying computer vision technology to con
struction safety, (2) examine the links between computer vision applications and key research themes of 
construction safety, (3) discuss the theoretical challenges of applying computer vision to construction safety, and 
(4) recommend future research directions. A five-step review approach was adopted to search and analyze peer- 
reviewed academic journal articles. A three-level computer vision development framework was proposed to 
categorized computer vision applications in the construction industry. The links between computer vision and 
three main safety research traditions: safety management system, behavior-based safety program, and safety 
culture, were discussed. The results suggest that the majority of past efforts were focused on object recognition, 
object tracking, and action recognition, with limited research focused on recognizing unsafe behavior. There are 
even fewer studies aimed at developing vision-based safety assessment and prediction systems. Based on the 
review findings, four future research directions are suggested: (1) develop and test a behavioral-cues-based safety 
climate measure, (2) develop safety behavior datasets, (3) develop a formal hazard identification and assessment 
model, and (4) develop criteria to evaluate the real impacts of vision-based technologies on safety performance.   

1. Introduction 

Construction is a pillar industry for economic development and 
employment worldwide. However, construction sites are hazardous in 
nature. The industry has been one of the top contributors to workplace 
injuries and fatalities in many countries and regions and therefore 
construction safety remains as one of the major issues in academic 
research and in practice. Traditionally research effort has been focused 
the policy, management, human and cultural issues of safety and there 
have been critical reviews on these dimensions, for example, human 
factors in construction safety (Goh et al., 2018; Guo et al., 2015) and 
strategic safety management (Zou and Sunindijo, 2015). Effective safety 

planning and hazard analysis are an essential prerequisite to accident 
prevention. It has been argued that traditional safety management 
practices in the construction industry have been manual, time- 
consuming, selective, and therefore inefficient and error-prone (Zhang 
et al., 2015b; Zhang et al., 2013). For example, behavior-based safety 
(BBS) programs still rely on manual observations to collect unsafe be
haviors (Guo et al., 2018). Manual observations and inspections are 
difficult to cover the whole site and monitor all workers. In addition, 
paper-based hazard identification systems would impede timely risk 
communication (Zou et al., 2017a). 

The past two decades have seen increasing applications of digital 
technologies and techniques to help improve construction health and 
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safety management (Guo et al., 2017a). Examples of digital technologies 
include, but are not limited to, building information modelling (BIM) 
(Zou et al., 2017b), tracking and positioning technologies (Teizer et al., 
2013), augmented reality and virtual reality (Wang et al., 2013), and 
artificial intelligence (Goh and Guo, 2018; Guo and Goh, 2017). These 
digital technologies have demonstrated great potential to improve safety 
planning, hazard management, and safety training and education. 
Comprehensive summaries of the research in this topic area can be 
found in (Guo et al., 2017a; Guo et al., 2017b; Li et al., 2018). 

Recent years have also seen growing interests in computer vision 
applications to address the problems in the architecture, engineering, 
and construction (AEC) industry. Computer vision is an interdisciplinary 
area that deals with how computers can provide enriched information to 
support and achieve a high-level understanding of objects and events 
present in a scene through the analysis of digital images or videos. In 
recent years, significant research efforts have been made to recognize 
and track physical elements of engineering projects (e.g., building ele
ments, tools and equipment, materials, and workers) (Teizer, 2015). 
These efforts have laid a strong foundation for more advanced analysis 
and assessment, like understanding of construction activities (Seo et al., 
2015), productivity assessment (Ibrahim et al., 2009), quality analysis 
(Akinci et al., 2006), and real-time structural health of bridges and 
highways (Fraser et al., 2009). These efforts also made the applications 
of computer vision to construction health and safety (H&S) possible, and 
there have been important initiatives to automate H&S processes. For 
example, Yu et al. (2017) tested the feasibility and accuracy of using 
computer vision for recognizing three types of unsafe construction be
haviors. Han and Lee (2013) proposed a new computer vision-based 
framework for unsafe action detection and behavior monitoring. Simi
larly, Fang et al. (2018d) developed a set of computer vision algorithms 
to detect workers not wearing harnesses. 

Seo et al. (2015) reviewed computer vision techniques for the con
struction health and safety monitoring. The study was focused on 
evaluating unsafe behavior from a technical and practical perspective (e. 
g., image sensing devices, camera position, viewpoints, etc.). However, 
safety is a multi-faceted concept and consists of other important di
mensions, like safety culture, safety climate, and safety management 
system (Cooper, 2000a,b), and it relates to not only human behavior but 
also the surrounding environmental conditions such as moving ma
chines, equipment and objects. To the best of the authors’ knowledge, 
there is no research that exams the theoretical links between computer 
vision technology and safety science and management. To further reap 
the benefits of computer vision for construction health and safety, it is 
important to review and evaluate the theoretical links to these key 
dimensions. 

The objectives of this paper are to: (1) investigate the current status 
of applying computer vision to construction safety, (2) examine the links 
between computer vision applications and key research themes of con
struction safety (i.e., safety management system, behavior-based safety 
program, and safety culture), (3) discuss the theoretical challenges of 
applying computer vision to construction safety, and (4) recommend 
future research directions. 

2. Methodology 

This study applied the systematic review approach adopted by Zhou 
et al. (2015). The approach consists of five main steps: (1) literature 
search, (2) literature selection, (3) literature coding, (4) data analysis, 
and (5) discussion. 

2.1. Literature search 

Scopus is chosen as the database in this study, as it covers a wider 
journal range (i.e. over 22,000 journals) than Web of Science and Google 
Scholar (Falagas et al., 2008). Search attributes and their values are 
presented in Table 1. 

As this study focuses only on the applications of computer science to 
construction health and safety management, only four relevant subject 
areas were considered, including Engineering, Computer Science, Social 
Science, and Psychology. Other subject areas like Mathematics, Physics 
and Astronomy, Material Science, Medicine, Earth, and Planetary Sci
ences were excluded. Only journal articles were considered in this study. 
The initial search has resulted in a total of 1711 journal papers. 

Following the systematic review approach (Zhou et al., 2015), a 
secondary search was conducted by picking up journals that are relevant 
to the construction industry and safety science. Eleven journals were 
selected to perform the secondary search, including Automation in 
Construction, Journal of Computing in Civil Engineering, Advanced 
Engineering Informatics, Journal of Construction Engineering and 
Management, Journal of Management in Engineering, Accident Analysis 
and Prevention, Computer-Aided Civil and Infrastructure Engineering, 
Canadian Journal of Civil Engineering, and Electronic Journal of In
formation Technology in Construction, and Safety Science. 

Keywords and Boolean operators, “computer vision” AND “con
struction”, were implemented to search relevant papers in these jour
nals. The secondary search has identified 893 journal papers. 

2.2. Literature selection 

Note that the secondary search did not focus only on the applications 
of computer vision to construction health and safety, rather it consid
ered general applications of computer vision to construction. This 
consideration is based on the fact that vision-based health and safety 
management largely relies on object recognition and tracking. Including 
the foundational works can help understand the evolution of computer 
vision for construction health and safety. A preliminary review was 
performed to determine if the 893 papers should be kept for in-depth 
review and analysis based on the following filter criteria: 

Table 1 
First search methods.  

Search attributes Values used in the search 

Database Scopus 
Keywords and Boolean 

operators 
“Computer vision” OR “object recognition”, OR “object 
tracking”, OR “action recognition” AND “construction”, 
OR “health and safety”, OR “risk assessment”, OR 
“hazard”, OR “accident”, OR “incident”, OR “safety” 

Search scope Article title, abstract, or keywords 
Published year from all years to present 
Subject area Engineering; Computer Science; Social Science; 

Psychology; 
Source /Document type Journal article 
Language English  

Table 2 
Development levels of computer vision.  

Development Level Function Key research questions 

L1: Detection, 
recognition, and 
tracking 

L1.1 Object detection 
and recognition 

Is something there? What 
is the object? 

L1.2 Object tracking Where is the object? 
Where is the object 
headed? 

L1.3 Action recognition What is the object doing? 
L2: Assessment L2.1 Object assessment Is the object a hazard? 

Is the object in an unsafe 
or unhealthy state? 

L2.2 Behavior 
assessment 

Is the action unsafe or 
unhealthy? 

L2.3 Condition 
assessment 

Is the working condition 
(scenario) unsafe? 

L3: Prediction L3.1 Behavior 
prediction 

How will the object 
behave? 

L3.2 Incident prediction Will the next incident 
occur?  
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(1) Only research articles, technical papers, case study, review pa
pers were kept, while all book reviews, editorials, and conference 
papers were excluded.  

(2) Articles that only mentioned “computer vision” but do not focus 
were removed.  

(3) Articles that apply computer vision to the robot, manufacturing, 
structural assessment, inspection, and defect and crack detection 
were also excluded, as they do not represent the foundational 
works for vision-based health and safety management. 

As a result, a total of 165 papers were retained for in-depth review 
and analysis. 

2.3. Literature coding 

All remaining papers were coded according to (1) title, (2) publica
tion year, (3) journal title, (4) country or region (all authors were 
counted), (5) development level. 

Based on the literature review, we classified the development and 
application of computer vision in the construction industry into three 
different levels: L1 detection, recognition and tracking, L2 assessment, 
and L3 prediction. As shown in Table 2, Level 1 can be further decom
posed into three sub-levels: L1.1 object detection and recognition, L1.2 
object tracking, and L1.3 action recognition. These three levels were 
proposed mainly based on a health and safety perspective, as applica
tions at different levels have different implications on construction 

health and safety management. 
The three sub-levels ask three key research questions (1) is some

thing there? (2) what is the object? (3) where is the object? and (4) what 
is the object doing? respectively. Computer vision applications at the 
Level 2 aim to determine if an object is a hazard (i.e., L2.1 object 
assessment) and an action is safe or not (i.e., L2.2 behavior assessment) 
or assess the risk level of the work conditions which consist of building 
elements, workers, equipment, tools, and materials (i.e., L2.3 condition 
assessment). Key research questions at this level include: (1) is the object 
a hazard? (2) is the action unsafe or unhealthy? and (3) is the working 
condition (scenario) unsafe? At Level 3, computer vision techniques are 
used to predict behavior (i.e., L3.1 behavior prediction) or generate 
early warnings of incidents (i.e., L3.2 incident prediction). Key research 
questions at this level are: (1) how will the object behave, and (2) will 
the next incident occur? 

3. Results 

3.1. Journal sources 

Table 3 presents the distribution of the 153 papers in the 10 journals. 
Automation in Construction has 69 papers, accounting for almost half 
(45%) of all selected papers. Journal of Computing in Civil Engineering 
and Advanced Engineering Informatics have 27 and 23 papers, respec
tively, followed by the Journal of Construction Engineering and Man
agement and Accident Analysis and Prevention. Only 11% of the 
selected papers were published in the other 5 journals. 

3.2. Year profile of publications 

The earliest relevant paper was published in the Journal of 
Computing in Civil Engineering in 1997. The paper presented a vision- 
based interactive control technology to support the operation of 
bridge paint removal (Moon and Bernold, 1997). As shown in Fig. 1, the 
period between 1997 and 2007 had seen very few (only 10) studies of 
computer vision for construction. Starting from 2008, the topic of 
computer vision had received increasing attention since 2008 in the 
construction industry and safety science and management. Despite the 
fluctuations between 2008 and 2019, there has been an increasing trend 
during the period. 

Table 3 
Relevant paper number by journals.  

Journal title Number of papers 

Automation in Construction 69 
Journal of Computing in Civil Engineering 27 
Advanced Engineering Informatics 23 
Journal of Construction Engineering and Management 9 
Accident Analysis and Prevention 8 
Canadian Journal of Civil Engineering 4 
Computer-Aided Civil and Infrastructure Engineering 4 
Safety Science 3 
Electronic Journal Of Information Technology In Construction 3 
Construction Innovation 3  

Fig. 1. Annual distribution of publications from 1997 to 2019.  

B.H.W. Guo et al.                                                                                                                                                                                                                               



Safety Science 135 (2021) 105130

4

3.3. Publications distributed by country/region 

The selected publications were then coded based on all the authors’ 
affiliation. As shown in Fig. 2, authors from the USA wrote about 41% 
(62 papers) of all papers selected, which are followed by authors from 
Canada (24%), South Korea (18%), China (14%), the UK (11%), Hong 
Kong (10%), Australia (8%), and Germany (5%). Authors from other 
countries and regions were responsible for 14% of the selected papers. 

3.4. L1: Detection, recognition, and tracking 

Construction sites involve various project-related objects (e.g., 
workers, equipment, tools, and resources) and a wide range of activities 
(e.g., earthmoving, lifting and hoisting). Safety risks and hazards are 
closely related to site objects’ physical characteristics, location, moving 
path, activities, and spatial and temporal relationships between them. 
Thus, recognizing and tracking site objects of interest and recognizing 
activities are essential for computer systems to understand the complex 
scenes of construction and perform a risk assessment and hazard 
management. 

3.4.1. L1.1 object detection and recognition 
In general, object recognition aims to recognize the objects of in

terest on site from images and video frames. Object detection and 
recognition are concerned with the questions: (1) is something there, 
and (2) what is the object? Based on their recognition cues, the methods 
can be generally classified into three main categories: (1) geometry- 
based, (2) appearance-based, and (3) feature-based (Tajeen and Zhu, 
2014). Early object recognition studies in the construction industry 
tended to apply geometry-based and appearance-based methods. For 
example, Chi and Caldas (2011a) selected four main geometric and 
appearance features (i.e., aspect ratio, height-normalized area size, 
percentage of occupancy of the bounding box, and average gray-scaled 
color) to classify mobile heavy equipment and workers. 

The period between 2011 and 2016 has seen more applications of 
visual feature detectors and descriptors to object detection in the con
struction industry (Azar, 2015; Azar and McCabe, 2012; Dimitrov and 
Golparvar-Fard, 2014; Memarzadeh et al., 2013; Park et al., 2015; 
Rezazadeh Azar and McCabe, 2011; Soltani et al., 2016). They include 
the Scale-Invariant Feature Transform (SIFT) (Lowe, 1999), Histogram 
of Oriented Gradients (HOG) (Dalal and Triggs, 2005), Haar-like fea
tures (Lienhart and Maydt, 2002), and the Speeded Up Robust Features 
(SURF) (Bay et al., 2008). These methods capture a set of local visual 
features to represent an object. The significant advantage of these 
methods is that they are robust in partial occlusion due to the fact that 

they capture scale-illumination- and affine transformation- invariant 
features (Carr et al., 2012; Tajeen and Zhu, 2014). 

Since 2017, deep learning techniques have become primary object 
detection and recognition methods. For example, Kim et al. (2017) 
applied the region-based fully convolutional network (R-FCN) (Dai 
et al., 2016) as a classifier to recognize heavy equipment on site (e.g., 
dump truck, excavator, loader, concrete mixer truck, and road roller). 
The method has achieved a high level of precision and recall rate. In 
addition, another deep learning technique, Faster R-CNN (region-based 
convolutional neural networks), has also gained popularity. For 
example, it has been utilized to detect non-hardhat-users (Fang et al., 
2018b), worker (Fang et al., 2018d; Son et al., 2019), nails and screws 
(Wang et al., 2019). The major advantage of Faster R-CNN, compared to 
R-CNN, is that it is much faster and enables real-time object detection 
(Ren et al., 2015). It is also powerful to deal with occlusion (Fang et al., 
2018b). Tajeen and Zhu (2014) developed and evaluated a dataset of 
five classes of construction equipment (excavator, loader, dozer, roller, 
and backhoe) by using two well-known object recognition methods 
developed by Torralba et al. (2004) and Felzenszwalb et al. (2009). 
Results suggested that the methods demonstrated strengths in different 
aspects (i.e., correctness, robustness, and speed). A summary of object 
detection and recognition studies in the construction industry is pre
sented in Table 4. 

Research has been conducted to recognize special “objects”, such as 
workspaces and trades. For example, Luo et al. (2019) identified four 
types of workspaces (i.e., working areas, paths, laydown areas, and rest 
areas) by integrating object detection, multiple object tracking, action 
recognition, and reasoning. Due to the temporal and spatial nature of 
site hazards, vision-based workplace identification can help safety 
planning. Fang et al. (2018c) proposed a novel framework to recognize 
trades by analyzing the dynamic spatiotemporal relevance between 
workers and non-worker objects. 

3.4.2. L1.2 object tracking 
Object tracking is another important research topic in computer 

vision. Monitoring workers and equipment is of great importance for site 
safety. The goal of object tracking is to locate a moving object of interest 
over time. In general, it consists of detecting the object, creating a 
unique ID for the object, and tracking the object as it moves around 
frames in a video. In a tracking task, objects of interest can be repre
sented by shapes (e.g., skeleton, points, geometric shapes, and contour) 
and appearances (e.g., color, edges, and texture). 

2D object tracking methods can be classified into three categories: 
(1) Silhouette (or Contour) tracking, (2) kernel tracking, and (3) Point 
tracking (Park et al., 2011; Yilmaz et al., 2006). Silhouette tracking 

Fig. 2. Geographical distribution of publications.  
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methods represent the object by edges, contours or silhouettes. The goal 
of Silhouette tracking is to find the object region in each frame based on 
the representation. Kernel-based trackers compute the motion of the 
kernel of the object (i.e., shape and appearance) in each frame. Point- 
based methods detect objects that are represented by points in consec
utive frames (Yilmaz et al., 2006). 

Table 5 summarizes the studies of object tracking in the construction 
industry. It is evident that construction workers are the main object of 
interest. Different tracking methods (e.g., Kernel tracking, Point 
tracking, and Silhouette tracking) were applied to track workers (Park 
and Brilakis, 2016; Teizer and Vela, 2009; Yang et al., 2010; Zhu et al., 
2016b). Despite these advances, there are a number of significant 
challenges when tracking construction site resources, including (1) scale 
variations, (2) occlusions, (3) appearance similarity, (4) abrupt move
ment, (5) background clutter (Konstantinou et al., 2019; Teizer, 2015). 
Park et al. (2011) conducted experiments to compare these 2D vision 
trackers’ effectiveness in tracking construction resources. Results indi
cated that the kernel-based method was stable and insensitive to illu
mination conditions, illumination variation, and scale variations and 
that the point-based method is effective to deal with occlusions. They 
suggested that overall the kernel-based methods were the most appro
priate for tracking construction site resources. In order to address these 
challenges, Konstantinou et al. (2019) proposed a novel 2D tracking 
method that consists of three models, including an adaptive model, a 
prediction model, and an appearance model, to track multiple workers 
in complex environments (e.g., occlusions, illumination variations, 
congested environment, and abrupt changes of workers’ motion). 

2D tracking results are not always adequate for comprehensive 
construction-related assessment and analysis (e.g., productivity or safety 
assessment) and hence the attempts in acquiring a 3D position, direc
tion, and speed of construction objects are important. Brilakis et al. 
(2011) proposed a vision-based tracking method that provides 3D po
sitions of wheel loaders and trucks by correlating two camera views. 
Konstantinou and Brilakis (2018) adopted a motion-based matching 
method in conjunction with geometric restrictions. In addition, Lee and 
Park (2019) developed a framework that can track multiple workers’ 3D 
positions based on stereo vision. 

3.4.3. L1.3 action recognition 
Human action recognition is an active research topic in the computer 

vision community (Vrigkas et al., 2015). It aims to recognize the actions 
of an agent of interest. The goal of action recognition is to correctly 
classify input data (e.g., video sequences or still images) into the un
derlying action category. Research has suggested that most of the con
struction accidents are caused by human errors and human-equipment 
interactions. Thus, an effective vision-based safety monitoring system 
requires to recognize not only human actions but also equipment op
erations. Edwards et al. (2016) classified human behavior into five 
categories with different levels of abstraction and complexity: (1) pose, 
(2) gesture, (3) action, (4) interaction (human-to-human and human-to- 
object), and (5) activity. 

Human action recognition methods can be grouped into two main 
categories: (1) unimodal and (2) multimodal methods (Vrigkas et al., 
2015). Unimodal methods use the data of a single modality to represent 
actions and they can be further categorized into four methods (1) 
space–time, (2) stochastic, (3) rule-based, and (4) shape-based methods. 
In contrast, multimodal methods integrate features obtained from 

Table 4 
Object detection and recognition studies in the construction industry.  

Paper Object Detectors/classifiers Performance 
(correctness) 

Chi and Caldas 
(2011a) 

Mobile heavy 
equipment; 
workers 

Two classifiers: 
Normal Bayes 
classifier and Neural 
network 

Accuracy: 96% 

Rezazadeh 
Azar and 
McCabe 
(2011) 

Dump trucks Haar–histogram of 
oriented gradients 
(HOG) and Blob–HOG 

Detection: 91% 

Park and 
Brilakis 
(2012) 

Worker HOG, HSV color 
histogram, support 
vector machine 
(SVM), and k-NN 
classifier 

Precision: 99.0% 
Recall: 81.4% 

Azar and 
McCabe 
(2012) 

Hydraulic 
excavators 

HOG, latent support 
vector machine 
(SVM) and, 
spatial–temporal 
reasoning 

Accuracy: 95.2% 

Memarzadeh 
et al. (2013) 

Standing 
workers; 
excavators; 
dump trucks 

Histograms of 
Oriented Gradients 
and Colors (HOG +
C), and binary SVM 

Accuracy: 98.83% 
(standing 
workers), 82.10% 
(excavators), and 
84.88% (dump 
trucks) 

Dimitrov and 
Golparvar- 
Fard (2014) 

Construction 
materials 

Hue-Saturation-Value 
(HSV) color values, 
kernel Support Vector 
Machine 

Accuracy: 97.1% 

Azar (2015) Dump trucks; 
excavators 

HOG, Linear SVM, 
and AprilTag 

Precision: 100%, 
Recall: 64.6% 
(excavators) and 
77.1% (dump 
trucks) 

Park et al. 
(2015) 

Human body; 
hardhat 

HOG and SVM Precision: 99.6% 
Recall: 96.8% 

Kim et al. 
(2016) 

Construction site 
objects (e.g., 
loader, dust, 
crane, etc.) 

Data-driven scene 
parsing method 

Recognition: 
81.48% 

Soltani et al. 
(2016) 

Excavators HOG, 3D model with 
16 backgrounds 

Recall: 98%; 
Accuracy: 75% 

Kim et al. 
(2017) 

Dump truck, 
excavator, 
loader, concrete 
mixer truck, and 
road roller 

Region-based fully 
convolutional 
network (R-FCN) 

Average Precision: 
96.33%, 
Average Recall: 
91.94% 

Hamledari 
et al. (2017) 

Drywall, 
insulation, stud, 
electrical outlet 

SVM Precision: from 
80.21 to 92%, 
Recall: from 
80.50% to 93.43% 

Kim and Kim 
(2018) 

Concrete mixer 
truck 

HOG and SVM Precision: 
77.27%, 
Recall: 75.56 

Fang et al. 
(2018b) 

Non-hardhat- 
users 

Faster R-CNN (region- 
based convolutional 
neural networks) 

Precision: 95.7%, 
Recall: 94.9% 

Fang et al. 
(2018d) 

Worker, safety 
harness 

Faster R-CNN and a 
deep CNN 

Precision: 99%, 
Recall: 95% 

Kolar et al. 
(2018) 

Safety guardrail Convolutional neural 
network (CNN) 

Accuracy: 96.5% 

Fang et al. 
(2018e) 

Excavator, 
worker 

Improved Faster 
Regions with 
Convolutional Neural 
Network Features 
(IFaster R-CNN) 

Accuracy: 91% 
(worker), 95% 
(excavator) 

Mneymneh 
et al. (2018) 

Worker, hardhat HOG and SVM Human: precision: 
98.82%, recall of 
86.41%; 
Hardhat: 
precision: 94.65%, 
recall of 93.48% 

Son et al. 
(2019) 

Worker Faster R-CNN Precision: 
96.03%,  

Table 4 (continued ) 

Paper Object Detectors/classifiers Performance 
(correctness) 

Recall: 98.13% 
Accuracy: 94.3% 

Wang et al. 
(2019) 

Nails and screws Faster R-CNN Average Precision: 
89.1%  
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different sources (e.g., visual and audio data) and they can be classified 
into three categories: (1) affective, (2) behavioral, and (3) social 
networking methods. It is beyond the scope of this paper to introduce 
each method. Details can be found in work by Vrigkas et al. (2015). 

Table 6 lists previous human and equipment action recognition 
studies in the construction industry sorted by year. Construction in
volves a wide range of heavy equipment (e.g., tower crane, dump trucks 
and excavators, etc.). Thus, recognizing equipment operations has also 
attracted much attention from researchers. 

Since 2007, attention has been paid on recognizing basic equipment 

operations, such as hydraulic excavator actions (Zou and Kim, 2007) and 
excavator and truck actions (Golparvar-Fard et al., 2013). The infor
mation of basic actions is of less usefulness to productivity analysis and 
schedule assessment. Thus, in recent years, researchers have made ef
forts to recognize actions with a higher level of abstraction and 

Table 5 
Object tracking studies in the construction industry.  

Paper Object tracked Description Tracking 
method applied 

Teizer and Vela 
(2009) 

Workers Compared four 
tracking techniques: 
Density Mean-shift, 
Bayesian 
Segmentation, Active 
Contours, and Graph- 
cuts, 
The Bayesian method 
with temporal 
averaging performed 
the best overall. 

Kernel tracking 

Chi et al. 
(2009) 

Construction 
resources 

Probabilistic Hausdorff 
image matching 

Silhouette 
tracking 

Yang et al. 
(2010) 

Multiple workers Kernel covariance 
tracking 

Kernel tracking 

Brilakis et al. 
(2011) 

Project-related 
entities (e.g. wheel 
loaders and trucks) 

Compared the three 
categories of 2D 
vision-based tracking 
methods – contour- 
based, kernel-based, 
and point-based 
methods. 

Kernel 
tracking, 
Silhouette 
tracking, and 
Point tracking 

Park et al. 
(2011) 

Construction site 
resources 

Compared the three 
categories of 2D 
vision-based tracking 
methods – contour- 
based, kernel-based, 
and point-based 
methods. 

Kernel 
tracking, 
Silhouette 
tracking, and 
Point tracking 

Teizer (2015) Temporary 
resources on 
infrastructure 
construction sites 

Reviewed the status 
quo and open 
challenges in vision- 
based tracking of 
temporary resources 
on infrastructure 
construction sites 

/ 

Park and 
Brilakis 
(2016) 

Workers Eigen-images and 
particle filtering (Ross 
et al., 2008) 

Point tracking 
and Kernel 
tracking 

Yuan et al. 
(2016) 

Excavator Optical flow 
estimation and 3D 
triangulation  

Zhu et al. 
(2016b) 

Workers, roller, 
truck, and dozer 

Particle filtering Point tracking 

Kim and Chi 
(2017) 

Construction 
equipment 

A median-flow 
algorithm (Kalal et al., 
2011) and a pyramidal 
Lucas-Kanade 
algorithm (Bouguet, 
2001) 

Point tracking 

Lee and Park 
(2019) 

Workers 3D tracking based on 
stereo vision 

3D tracking 

Konstantinou 
et al. (2019) 

Multiple workers Track multiple workers 
in complex 
environments (e.g., 
occlusions, 
illumination 
variations, congested 
environment, and 
abrupt changes of 
workers’ motion) 

/  

Table 6 
Action recognition studies in the construction industry.  

Study Year Action type Level of action 

Zou and Kim 
(2007) 

2007 Hydraulic excavator actions Action 

Gong and Caldas 
(2009) 

2010 Concrete column pour Activity 

Gong et al. (2011) 2011 Both worker actions (traveling, 
transporting, bending down, 
aligning, and nailing) and 
equipment actions (relocating, 
excavating, and swing) 

Action 

Bai et al. (2011) 2012 Worker back bending Pose 
Ray and Teizer 

(2012) 
2012 Worker standing, bending, sitting, 

crawling 
Pose 

Han et al. (2013) 2013 Reaching too far in ladder 
climbing 

Pose 

Golparvar-Fard 
et al. (2013) 

2013 Excavator and truck actions 
(digging, hauling, dumping, 
swinging, etc.) 

Action 

Azar et al. (2012) 2013 Excavators and dump trucks 
actions during dirt loading 

Object-to- 
object 
interaction 

Ranaweera et al. 
(2012) 

2013 Liner-lowering activity in tunnel 
construction 

activity 

Yang et al. (2012) 2014 Tower crane activity (loading, 
lifting, and unloading materials) 

Activity 

Khosrowpour 
et al. (2014) 

2014 picking up, holding, walking, 
putting down, measuring and 
cutting, breaking the gypsum 
board, and idling 

Action 

Han et al. (2014) 2014 Safe and unsafe actions Action 
Yang et al. (2016) 2016 lay brick, transporting, cut plate, 

drilling, tie rebar 
Action 

Bügler et al. 
(2017) 

2017 Earthmoving operations Object-to- 
object 
interaction 

Yu et al. (2017) 2017 Ladder climbing, leaning on 
handrails, dumping waste from 
height 

Pose 

Yan et al. (2017) 2017 Ergonomic postures Pose 
Azar (2015) 2017 Earthwork operation (e.g., 

backfill) 
Object-to- 
object 
interaction 

Luo et al. (2018b) 2018 17 types of construction activities 
and actions (e.g., placing concrete 
and fixing rebar) 

Activity and 
action 

Zhang et al. 
(2018) 

2018 Both arms below, etc. Pose 

Soltani et al. 
(2018) 

2018 Excavator pose Pose 

Kim et al. (2018a) 2018 Mixed activities of construction 
equipment 

Activity 

Kim et al. (2018b) 2018 Earthmoving operations Object-to- 
object 
interaction 

Ding et al. (2018) 2018 Normal ladder and abnormal 
ladder climbing 

Action 

Luo et al. (2018a) 2018 Steel bending, transporting, 
walking 

Action 

Luo et al. (2018c) 2018 16 classes of activities of rebar 
and formwork 

Activity and 
action 

Fang et al. 
(2018a) 

2018 Aerial operation scenario Human-object 
interactions 

Xu and Yoon 
(2019) 

2019 Excavator manipulator pose Pose 

Kim and Chi 
(2019) 

2019 excavator earthmoving Activity 

Liang et al. 
(2019) 

2019 Excavator manipulator pose Pose  
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complexity. For example, earthmoving activities involve the in
teractions between excavators and dump trucks. Efforts were made to 
recognize the interactions (Bügler et al., 2017; Kim and Chi, 2019; 
Rezazadeh Azar, 2017; Rezazadeh Azar et al., 2012). Event/Activity 
classification usually requires more information/features. For example, 
liner-lowering events were recognized based on the tunnel concrete 
liner recognition and descending trajectories of the liner (Ranaweera 
et al., 2012). 

In addition, Kim et al. (2018b) developed a vision-based activity 
recognition framework that can recognize the interaction between ex
cavators and dump trucks in earthmoving operations. They classified 
equipment behavior into low-level individual actions (e.g., load soil, 
travel to dumping area, and dump soil) and high-level activities (idle, 
travel, and work). High-level activities were recognized by interpreting 
the interactions based on a knowledge-based system that evaluates in
dividual actions and proximity between excavators and dump trucks. 
Interaction analysis was conducted based on co-existence and proximity 
of equipment and its action consistency. 

Early efforts of vision-based human action recognition were mainly 
focused on the pose and basic action (e.g., traveling, bending down, 
standing, sitting, and crawling) (Bai et al., 2011; Gong et al., 2011; Ray 
and Teizer, 2012). Inter-class similarity and intra-class variance are 
major challenges faced with vision-based human action recognition re
searchers (Gong et al., 2011). In construction, the inter-class similarity 
of different worker actions may be big, while the intra-class variance of 
the same action might also be significant. 

Action recognition can also be broken down into two processes: ac
tion detection and action recognition. For example, Yu et al. (2017) 
detected unsafe behaviors (i.e., is there an unsafe behavior?) by deter
mining the value ranges of key joint parameters based on the theory of 
human skeleton model, while recognized unsafe behaviors (i.e., which 
type of unsafe behavior) by selecting and measuring the parameters that 
can distinguish one behavior with the others. Luo et al. (2018b) pro
posed a two-step method to recognize diverse construction activities in 
still site images. It first detects construction-related objects using Faster 
R-CNN. The information was further processed based on semantic 
relevance rules to classify construction activities. 

It is worth noting that the main purpose of these studies is to facili
tate productivity analysis and optimization, rather than safety assess
ment and monitoring. Despite this, equipment operation recognition 
forms an essential part of vision-based safety assessment and monitoring 
system, as many site hazards are equipment-related. 

3.5. L2: Assessment 

High-level vision-based assessment is usually based on object 
detection and recognition, object tracking, and action recognition. For 
example, Fang et al. (2018c) demonstrated that detecting non-certified 
work on site was based on a combination of object detection, object 
tracking, face recognition, and trade recognition techniques. Assessment 
can be data-driven (e.g., using machine learning techniques), 
knowledge-driven (e.g., using rules), and model-driven (e.g., actual 
against planned schedule). It can be focused on objects, behaviors of 
objects, and conditions of the construction site. 

Table 7 presents vision-based assessment studies in the construction 
industry. It shows that past efforts were focused on vision-based pro
ductivity and safety assessment. In general, productivity analysis was 
performed based on object recognition, tracking, and/or action recog
nition. For example, Gong and Caldas (2011) developed a prototype 
system which uses objects’ (e.g., column, slab, scaffold, bobcat loader, 
etc.) spatial positions and moving trajectories as inputs to determine 
schedule progress by comparing the inputs against defined spatial re
gions. Bai et al. (2011) applied artificial neural networks (ANN) to 
determine if the working status is effective or not. In addition, Turkan 
et al. (2012) combined computer vision and building information 
modeling (BIM) technologies to assess productivity by measuring earned 

value (EV). 
From a health and safety perspective, object assessment refers to 

assessing if the object of interest is a hazard or not, or if the object is in an 
unsafe and unhealthy state. Vision-based site condition assessment is a 
higher level of application than object recognition and tracking and 
action recognition. The basic information extracted from object recog
nition and tracking and action recognition are often further assessed 
based on rule-based or ontology-based knowledge models. For example, 
Chi and Caldas (2011b) demonstrated how the data acquired from ob
ject recognition and tracking could be utilized for automatic safety 
assessment. They designed safety rules to detect three types of safety 
violation (i.e., speed limit, dangerous access, and close proximity). 
Similarly, Kim et al. (2015) developed an on-site safety assessment 
system which incorporates two modules: vision processing module 
(VPM) and safety assessment module (SAM). VPM collects the spatial 
information about workers and equipment using computer vision, while 
SAM assesses the safety levels using IF-THEN rules and fuzzy inference. 
Ray and Teizer (2012) applied to a linear discriminant analysis method 
to classify worker posture and then used predefined rules to determine if 
the posture is ergonomic or not. Chen et al. (2019) evaluated workers’ 
safety risk based on the fusion of position and posture information. 
However, the way that the authors measured the risk level without 
linking it to a specific hazard and the construction context is confusing 
and arbitrary. Kim et al. (2019a) used a camera-mounted unmanned 
aerial vehicle to evaluate the safety risk of struck-by hazard based on 
proximity measurement and monitoring. The system will visualize the 
hazard when a worker is close to mobile equipment. However, vision- 
based safety assessment system which is only based on proximity 
tends to generate false alarms. For example, it is safe when a worker is 
close to an excavator that is not operating. It would be more reliable if 
reasoning and inference are based on a combination of proximity mea
surement and action recognition. 

3.6. L3: Prediction 

From a proactive safety management perspective, being able to 
predict a dangerous situation before it occurs is far more important than 
recognizing it thereafter. This task is referred to as vision-based pre
diction where computer vision techniques anticipate “when will the 
object(s) do what”. Most of the existing action recognition methods, as 
reviewed in Section 3.4.3, were developed and applied to recognize 
complete actions. They are unable to recognize unfinished action videos 
and therefore cannot be used for action prediction. 

The literature review reveals that applications of computer vision to 
predict the motion of workers and mobile equipment in the construction 
industry have been rather limited. As an early attempt, Zhu et al. 
(2016a) used Kalman filters for predicting movements of workers and 
mobile equipment on the construction site in order to prevent, potential 

Table 7 
Vision-based productivity and safety assessment studies in the construction 
industry.  

Study Assessment type Assessment method 

Ibrahim et al. (2009) Productivity assessment Model-driven 
Gong and Caldas (2011) Productivity assessment Knowledge-driven 
Chi and Caldas (2011b) Safety assessment Knowledge-driven 
Bai et al. (2011) Productivity assessment Data-driven 
Turkan et al. (2012) Productivity assessment Model-driven 
Seo et al. (2014) Ergonomic assessment Data-driven 
Han et al. (2014) Safety assessment Data-driven 
Liu et al. (2015) Productivity assessment Knowledge-driven 
Kim et al. (2015) Safety assessment Knowledge-driven 
Bügler et al. (2017) Productivity assessment Data-driven 
Kropp et al. (2018) Productivity assessment Model-driven 
Chen et al. (2019) Safety assessment Model-driven 
Kim et al. (2019a) Safety assessment Model-driven 
Kim et al. (2019b) Productivity assessment Data-driven  
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struck-by accidents. This method involves two main steps: (1) estimate 
3D positions of workers and mobile equipment through visual detection, 
tracking, and triangulation and (2) feed the estimated positions into a 
Kalman filter to predict the positions of workers and equipment. The 
performance of the Kalman filter can be further enhanced by learning 
from past prediction. 

Despite the scarcity of relevant studies in the construction domain, 
action prediction is gaining increased attention in the computer vision 
community. For example, Ryoo (2011) presented a human activity 
prediction method, a combination of integral bag-of-words and dynamic 
bag-of-words, for activity prediction. Lan et al. (2014) proposed a new 
representation, hierarchical movements, to describe human movements 
at multiple levels of granularities and developed a max-margin learning 
framework for action prediction. Koppula and Saxena (2016) used an 
anticipatory temporal conditional random field (ATCRF) to anticipate 
human activities. The study obtained an activity anticipation accuracy 
of 84.1%, 74.4%, and 62.2% for an anticipation time of 1, 3, and 10 s 
respectively. It is clear that the method is less powerful to predict human 
activities for a long time horizon. To address this problem, Farha et al. 
(2018) proposed two novel approaches to improve prediction duration. 
The first approach is based on a recurrent neural network (RNN), while 
the second approach builds on a convolutional neural network (CNN). 
The work can predict video content of up to several minutes’ length. It is 
beyond the scope of this paper to review human activity prediction 
studies in the computer vision community. Readers are referred to a 
comprehensive survey by Trong et al. (2017). 

4. Discussion 

In a comprehensive survey, Jin et al. (2019) identified five main 
research topics within the theme of construction safety, including (1) 
safety climate and safety culture, (2) information and communication 
technology (ICT) in safety management, (3) workers’ safety perception 
and behavior, (4) safety management system, and (5) hazard identifi
cation, accident causation, and risk management in safety. Considering 
the fact that computer vision represents an ICT and that hazard identi
fication and risk management can be integrated into safety management 
systems, this section discusses three main aspects to demonstrate how 
computer vision technologies may be applied in improving construction 
safety management. These are (1) vision-based safety management 
system, (2) vision-based behavior-based safety (BBS) program, and (3) 
vision-based safety culture sensing system. 

4.1. Vision-based safety management system 

A safety management system (SMS) integrates a combination of ac
tivities and functions to identify hazards and manage risks in the 
workplace (Guo and Yiu, 2016). Common safety management activities 
in the construction industry include, but are not limited to, health and 
safety policy, safety planning, hazard management, workplace in
spections, incident reporting and investigation, and training and su
pervision. Safety (or accidents) can be understood as an outcome of the 
quality of the implementation and monitoring of these integrated ac
tivities and processes (Le Coze, 2013). In general, a safety management 
system approach focuses on three main aspects: physical workplace, 
people, and organization issues (Makin and Winder, 2008; Zou and 
Sunindijo, 2015). The links between computer vision and SMS can be 
discussed based on these three aspects. 

4.1.1. Safe workplace 
One purpose of SMS is to create a safe workplace for workers by 

identifying hazards, evaluating and controlling risks. Current hazard 
identification practices in the construction industry are largely paper- 
based, manual, and inefficient (Zhang et al., 2015a). Research has sug
gested that a large proportion of safety hazards remain unrecognized 
and unmanaged in complex and dynamic construction environments 

(Carter and Smith, 2006; Jeelani et al., 2016). Past studies have 
demonstrated that computer vision can be applied to support hazard 
identification, such as Kim et al. (2019a) and Kim et al. (2015). To be 
useful in practice, a vision-based hazard identification system must have 
a satisfactory level of comprehensiveness and correctness. First, it is 
crucial for the system to identify most, if not all, hazards. To achieve 
this, a comprehensive hazard profile and knowledge base need to be 
developed. Human experts recognize hazards by utilizing their knowl
edge and experience. Such a knowledge base needs to be generalized and 
formalized so that the computer system can understand and apply it to 
different scenarios and situations. Note that hazard identification is 
more than common sense, because hazards can be created and emerged 
by spatial and temporal dynamics between construction site objects 
(Sacks et al., 2009). Therefore, it is inadequate to define and model a 
hazard only by its source. As construction is dynamic in nature, the 
mechanism for a hazard to take place needs to be modeled and 
formalized. An important assumption can be made that the nature of the 
hazard is closely associated with spatial and temporal relationships 
between building elements, materials, temporary equipment and tools, 
operations, and human workspace. By developing such a spatial and 
temporal model, a hazard can be re-defined using geometric, spatial, and 
temporal features, and specific patterns could be identified to distin
guish the hazard from others. 

Once a formal hazard model is integrated into a vision-based system, 
it is essential that the system understands the ‘meaning” of the whole site 
scene. Being able to recognize all objects and actions does not neces
sarily enable the system to achieve a higher level of scene understand
ing. From a health and safety perspective, scene understanding involves 
the following main hierarchical functions:  

(1) Understand what the objects are (including humans);  
(2) Understand their roles and relationships;  
(3) Understand their actions;  
(4) Understand the interactions between their actions;  
(5) Understand the activities, scenarios, or work packages they 

participate in; 
(6) Understand the interactions between different activities, sce

narios, or work packages. 

This higher level of scene understanding can generate richer infor
mation that can drive more powerful reasoning based on the formal 
hazard model, which improves the system’s capability to identify un
expected hazards and unknown potential hazard sets. Once hazards are 
identified, safety risk evaluation can be performed based on rules and/or 
knowledge models. 

4.1.2. Safe people 
The key concept that links computer vision with the strategy is 

“situational awareness (SA)”. SA also refers to “the ability of maintaining an 
appropriate picture of situations to perform safe operations” (Le Coze, 
2016). Construction is highly dynamic in nature, and it is beyond even 
experienced workers’ ability to identify all hazards present on site. As a 
result, there are often discrepancies between the human operators’ (i.e., 
workers and managers) understanding of system status and actual sys
tem status. Endsley developed a model of situational awareness (Ends
ley, 1995), in which SA is defined at three ascending levels, perception, 
comprehension, and projection:  

• Level 1: Perception, the perception of the elements in the 
environment,  

• Level 2: Comprehension, comprehension of the current situation,  
• Level 3: Projection, prediction of future status. 

As illustrated in Fig. 3, there exists a correspondence between the 
three-level of SA and the three levels of computer vision development 
proposed earlier in Section 2.3. 
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On the left-hand side, developing and maintaining situation aware
ness requires site personnel to constantly perceive the dynamic site 
environment, understand the safety impacts, and predict the future 
hazard profile. Note that Level 1 SA requires high attentional demands 
and a mental model that directs attention; Levels 2 and 3 SA are 
developed based on valid safety knowledge that can interpret the in
formation obtained at Level 1. Given the linkage between goals and 
mental models (Endsley, 2015), it is likely that workers ignore some 
safety-related information when they are under production pressure. In 
addition, it is challenging for workers, especially inexperienced novices, 
to obtain a quick and reliable understanding of safety impacts on site. It 
is even difficult for experienced workers to understand and predict the 
interactions between different objects and activities. As a result, it is 
unlikely the workers are able to develop and maintain a high level of SA 
on their own. 

There is a significant potential for a vision-based system to reduce 
the cognitive burden and improve workers’ SA at all three levels. 
Computer vision, combined with other information technologies (e.g., 
wearable technologies and wireless sensors), is capable of switching 
workers’ information processing fashion. Without information technol
ogies, workers’ information processing is largely goal-driven and top- 
down, that is, a worker’s goals direct his/her attention to the site 
environment. Due to the goal conflicts (e.g., production vs safety), goal- 
driven and top-down information processing and decision making can 
deactivate safety-oriented goals and mental models. By providing timely 
cues, hazard information, assessment, and prediction, vision-based 
systems are able to switch the fashion to bottom-up and data-driven 
information processing. This can considerably help workers develop 
and maintain SA. 

4.1.3. Safe organization 
Vision-based safety management systems can help build a learning 

organization. Efforts can be made to create video and image databases of 
unsafe behavior and incidents. Computer vision techniques can be 
applied to annotate accident-related videos and images. Information 
retrieval applications can be developed to facilitate the retrieval of 
relevant information for safety training, education, and planning. Data- 
driven accident classification and analysis are not new to safety research 
(Goh and Ubeynarayana, 2017; Tixier et al., 2016). Nevertheless, vision- 
based accident classification and analysis is still in its infancy. In the 
long term, once the database reaches a suitable size, machine learning 

algorithms could be applied for useful and legitimate accident classifi
cation and prediction. This can significantly help construction com
panies become true learning organizations if accident-related sensitivity 
and bureaucracy can be well managed. 

4.2. Vision-based behavior-based safety (BBS) program 

In the evolution of safety theories over the past decades, under
standing and managing safety behavior has been an important and 
popular research topic. Promoting safe behavior is a crucial factor in 
safety (Guo et al., 2016a). For instance, BBS has received significant 
attention from researchers since the 1970 s. In general, BBS involves a 
circle of goal setting, manual observation, feedback, and training. 
Different theories (e.g., reinforcement theory and goal-setting theory) 
may be integrated into different BBS programs (Guo et al., 2018). The 
main limitation of BBS programs is that it relies on manual observation 
and analysis, which is subjective, laborious, and inefficient. In addition, 
the scope of human observation is limited and therefore a big picture is 
often lost. This has significantly impeded the adoption of BBS in the 
construction industry. 

Computer vision has considerable potential to improve efficiency in 
observation, and thus facilitate advanced behavioral analysis. As 
reviewed in this paper, previous works have proved that computer 
vision can accurately recognize unhealthy pose and simple actions, such 
as non-PPE (personal protection equipment) users and unsafe ladder 
climbing. The major limitation is that they focused on recognizing 
simple repetitive actions (traveling, standing, and bending). In tradi
tional BBS programs, it is of less interest to record simple gestures and 
atomic actions like not wearing a hardhat. Many interesting human 
activities on site are characterized by a complex spatial and temporal 
composition of objects and actions. For example, one of the unsafe be
haviors in a checklist developed for a BBS program is: “The signalman 
gives a warning signal when the load is lifted or moved and ensures no 
one is standing under the suspended load” (Guo et al., 2018). To 
recognize an unsafe behavior that violates this rule, computer vision 
must not only recognize involved objects (i.e., workers, crane, load) in 
terms of identity, location, movement direction, but more importantly, 
understand the interactions between these objects. 

It is clear that the benefits are limited when only classifying actions 
based on predefined categories (labeled as ‘safe” or “unsafe”) using 
machine learning. This is because there are too many varieties of 

Fig. 3. The correspondence between SA and CV.  
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conditions characterizing real construction site scenes, and it is difficult 
and inefficient to identify invariants that characterize a certain action 
and its dynamics. For example, as indicated by Gong et al. (2011), 
different action categories can have similar gestures and one action 
category can have a variety of gestures. In some case, whether an action 
is safe or not depends on the status of other objects. Thus, similar to 
vision-based hazard identification, assessing complex activities also re
quires a knowledge model that can determine if an action is safe or not 
and a framework that classifies safety behavior by the level of abstrac
tion and complexity. The authors of this paper propose a six-level hi
erarchical framework of safety behavior based on Edwards et al.’s five- 
level classification system (Edwards et al., 2016), as shown in Table 8. 
By using the hierarchy, unsafe and unhealthy behavior (as well as haz
ards) can be defined at different levels. Theoretically, observing actions 
at a high level of abstraction, like safety compliance and safety partici
pation, could enable an analysis of the correlation with safety culture 
and safety outcomes. 

4.3. Vision-based safety culture sensing system 

Safety culture has been an active research topic in safety science and 
management. The concept of safety culture claims that safety culture 
drives the safety process and the success of a safety management system 
is determined by behavior-based and human factors (Geller, 1994). An 
important research question can be asked: can computer vision be 
applied to measure safety culture? 

Given that safety culture is a multidimensional concept, which di
mensions of the concept can be measured? Cooper (2000a,b) proposed a 

reciprocal safety culture model that contains three interrelated ele
ments: (1) observable safety behaviors, (2) subjective internal psycho
logical features, and (3) objective situational features. Cooper suggested 
that internal psychological features can be assessed by safety climate 
questionnaires; safety behaviors can be assessed by observational 
checklists, and the situational features can be assessed through safety 
management system audits. Based on the reciprocal safety culture 
model, internal psychological features could be indirectly measured by 
measuring items in the safety climate questionnaires. In the construction 
industry, a number of safety climate measures were developed over the 
past three decades (Dedobbeleer and Béland, 1991; Fang et al., 2006; 
Guo et al., 2016a; Lingard et al., 2009; Mohamed, 2002). Safety climate 
can be seen as a subset of safety culture (Zou and Sunindijo, 2015). It has 
been proved to be a useful leading indicator of unsafe behavior and 
accident (Guo et al., 2016a; Guo et al., 2016b; Zohar, 2010). 

Table 9 lists safety climate factors and corresponding measurement 
items that could potentially be measured by computer vision techniques. 
Safety climate factors, like workers involvement, communication and 
support, PPE, supportive environment, supervisor’s role and workmate’s 

Table 8 
A hierarchical framework of safety behavior.  

Safety behavior level Definition Examples 

L1 Pose and 
gesture 

An atomic observation of 
the spatial arrangement of 
a human body at a single 
temporal instance  

• Unhealthy and unsafe 
ladder climbing posture 

A temporal series of poses 
or action primitives on a 
sub-action scale 

L2 Action A series of gestures which 
form a contextual event  

• A worker uses the welding 
face shield during hot 
work. 

L3 Human-to- 
human 
interaction 

A pairwise action 
committed by two people 
(e.g., workers)  

• Safety coaching between a 
site supervisor and a 
worker;  

• Safety communication 
between two workers. 

Human-to- 
object 
interaction 

A pairwise action 
committed by one 
individual upon an object 
(e.g., equipment)  

• The operator reverses the 
vehicle with guidance 
from the traffic controller. 

Object-to- 
object 
interaction 

Pairwise actions 
committed by two objects  

• The interactions between 
excavators and dump 
trucks during earthmoving 
operations 

L4 Activity A collection of action 
and/or interactions that 
compound to describe a 
high-level event  

• Roofing activity  
• Formwork activity  
• Scaffolding activity 

L5 Activity-to- 
activity 
interaction 

A pairwise activity 
committed by one 
individual (or group) 
upon another activity  

• The interaction between 
crane lift vs. roofing 

L6 Safety 
compliance 

Following rules in core 
safety activities  

• Adhering to safety 
procedures and carrying 
out work in a safe manner 

Safety 
participation 

Promoting the safety 
program within the 
workplace, demonstrating 
initiative, and putting 
effort into improving 
safety in the workplace  

• Safety coaching  

Table 9 
Safety climate measurement items that could be measured by computer vision.  

Safety climate factors Measurement items Sources 

Workers involvement  • Foreman regularly and 
frequently makes us aware of 
dangerous work practices and 
conditions and praises us for 
safe conduct. 

(Dedobbeleer and 
Béland, 1991)  

• Are there regular job safety 
meetings at your present job 
site? 

Communication and 
support  

• Workers are encouraged to 
support and look out for each 
other. 

(Glendon and 
Litherland, 2001) 

Personal protective 
equipment  

• PPE use if monitored to identify 
problem areas. 

Supportive 
environment  

• Often remind each other on how 
to work safely. 

(Mohamed, 2002)  

• Always offer help when needed 
to perform the job safely.  

• Endeavor to ensure that 
individuals are not working by 
themselves under risky or 
hazardous conditions. 

Supervisor’s and 
workmate’s role  

• People who work here often 
have to take risks when they are 
at work. 

(Fang et al., 2006)  

• People here always work safely 
even when they are not being 
supervised.  

• Supervisors seldom check that 
people here are working safely. 

Appraisal of safety 
procedure and work 
risk  

• People here always wear their 
health and safety protective 
equipment when they are 
supposed to. 

Risk-taking behavior  • Not all the health and safety 
procedures/instructions/rules 
are strictly followed here. 

Supervisory safety 
leadership  

• My supervisor approaches 
workers during work to discuss 
safety issues. 

(Lingard et al., 
2009)  

• My immediate supervisor often 
talks to me about health and 
safety. 

Co-workers’ actual 
safety  

• People here always work safely 
even when they are not being 
supervised. 

Social support  • When my supervisor and co- 
workers see me working at-risk, 
they caution me. 

(Guo et al., 2016a)  

• Supervisor frequently moves 
around inspecting the 
workplace.  
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role, appraisal of safety procedure and work risk, risk-taking behavior, 
supervisory safety leadership, co-workers’ actual safety, and social 
support, could be measured by computer vision if their visual features 
can be defined and recognized. 

Objects involved in these measurement items include (1) foremen, 
(2) workers, (3) PPE, and (4) supervisors. As suggested in Table 4, past 
studies have successfully recognized workers, trades, and PPE. Future 
efforts can be made to recognize different roles of site personnel, as this 
can help understand and recognize human actions. Human actions 
involved in these measurement items include (1) identify dangerous 
work practices, (2) praise workers, (3) organize job safety meeting, (4) 
workers support and look after each other, (5) risk-taking, (6) wear PPE, 
(7) safety rules violations, (8) supervisor discuss safety with workers, (9) 
work safely, (10) caution co-workers when they are working unsafely, 
and (11) safety inspection by supervisors. Matching these safety be
haviors that should be recognized against those human actions that can 
be recognized (see Table 6) makes it clear that much research effort is 
needed before computer vision technologies can be applied to measure 
the safety climate factors. 

Compared to these factors with tangible visual features, other safety 
climate factors, such as management commitment to safety, safety 
attitude, risk perceptions, and work pressure, are much more difficult to 
measure. Vision-based psychological feature recognition may benefit 
from Social Signal Processing (SSP) methods. SSP suggests that social 
signals (e.g., nonverbal behavior) are the expression of an individual’s 
attitude towards a particular social situation (Vinciarelli et al., 2009). It 
is believed that nonverbal behavior conveys information not only of 
individuals’ feelings, mental state, and personality but also, during so
cial interactions, of the nature of the social relationship (Vinciarelli 
et al., 2009). For example, SSP has been applied to determine learners’ 
interest level by sensing and interpreting behavior cues (Gatica-Perez 
et al., 2005; Mota and Picard, 2003). Similarly, it is possible to estimate 
the level of safety motivation and safety leadership on site by sensing 
and interpreting a useful set of behavioral cues. 

5. Future research 

It is important to recognize that current computer vision applications 
in construction health and safety management are still limited and 
primitive. To facilitate computer vision technology development and 
applications to construction health and safety, we suggest the following 
future research directions: 

5.1. Develop and test a behavioral-cues-based safety climate measure 

As a “snapshot” of safety culture, safety climate is usually measured 
through a questionnaire that captures workers’ perceptions of safety 
management. Guldenmund (2007) criticized safety climate question
naires for being a quick but also ‘dirty’ instrument, due to the fact that 
they are easy to use but include a lot of random ‘noise’. A vision-based 
behavioral approach can be used to supplement safety climate 
questionnaires. 

Safety climate studies in the construction industry have suggested 
that the same safety climate factor (e.g., supervisory support) can be 
measured by using different measurement items. The discussion in 
Section 4.3 showed that some safety climate factors (e.g., risk percep
tion) are difficult to measure using computer vision, due to a lack of 
tangible visual cues. To address this problem, a safety climate survey 
which consists of behaviors and tangible behavioral cues should be 
developed and tested in terms of reliability and validity. 

To this end, low-level visual features of relevant behaviors, as well as 
social and behavioral cues, need to be identified and linked to high-level 
safety climate factors, such as management commitment to safety and 
safety attitude. This effort would involve recognizing group behaviors 
(e.g., between supervisor and workers, or between workers). It is a 
common view of social science that group interactions are more complex 

than individual behavior (Lehmann-Willenbrock et al., 2017). More 
research efforts are needed to capture the group interactions by com
puter vision for construction health and safety. 

The value of linking behavior cues to safety climate lies in the fact 
that this provides an alternative for a long-term prediction of unsafe 
behavior and accident. Unlike a black-box machine learning approach, 
this can provide a more interpretable picture of site safety for managers. 

5.2. Develop safety behavior datasets 

Safety behaviors are often a set of events with different levels of 
abstraction and complexity, from simple unhealthy pose and gestures to 
complex social interactions on site. Past efforts to identify unsafe 
behavior using computer vision have been fragmented, with little 
consideration for a holistic framework that targets all possible unsafe 
behaviors. Chaquet et al. (2013) conducted a survey of video datasets for 
human action and activity recognition. There is a lack of publicly 
available datasets that are dedicated to safety behavior recognition in 
the construction industry. The hierarchical framework of safety 
behavior (Table 8) could be validated and used to classify the level of 
safety behavior from simple pose to complex interactions and activities. 
Different datasets should be developed at different levels to allow ma
chine learning models to develop an understanding of safety behaviors 
that occur on construction sites. Progress at the low-level recognition 
can facilitate high-level recognition. Meaningful aggregations from ac
tions, via activity, to activity-to-activity interaction, can significantly 
improve the efficiency and usefulness of vision- and behavior-based 
safety programs. 

In addition to the scope issue, behavior complexity and assessment 
criteria are key issues to be addressed by future studies. To perform 
comprehensive health and safety monitoring, a high level of scene un
derstanding is required. Future efforts can be made to obtain a semantic 
meaning of the construction site scene and explore how rich semantics 
can improve automatic hazard identification and health and safety 
monitoring. Future research efforts can also be made to link computer 
vision with workers’ behavior simulation models (e.g., agent-based 
safety behavior model (Zhang et al., 2019)). Data collected by com
puter vision can be integrated into the models as input for simulation 
and validation. Such a combination could be a promising research di
rection towards the predictive analysis of site safety. 

5.3. Develop a formal hazard model 

The identification of safety hazards requires more than common 
sense. People often show over-confidence and complacency in the haz
ard identification and management process. Traditional methods (e.g., 
job safety analysis, safe work method statement, and task analysis) 
define and identify hazards based on tasks and activities. These methods 
are most suitable when tasks are well defined. However, they may be 
ineffective to identify hazards that are emerged from the interactions 
between objects or between activities. These traditional methods can be 
complemented by re-defining hazards using the information obtained 
from computer vision assisted object recognition and tracking, action 
recognition, and spatiotemporal analysis. More research attention 
should be paid on teaching the vision-based system to understand the 
generation mechanism of hazards so that both short-term and long-term 
prediction can be made. Knowledge engineering tools such as ontology 
can be developed and utilized to enable semantic representation and 
reasoning. Once basic data (e.g., signal, perceptual features, and phys
ical objects and actions) are mapped into appropriate ontologies, the 
semantic meaning of the real construction site scene would be obtained. 
Therefore, more powerful reasoning can be performed based on the rich 
semantics to recognize hazards. 
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5.4. Evaluate the real impacts of vision-based technologies on safety 
performance 

Past research had focused on the development of vision-based sys
tems for site safety. Research that evaluates the real impacts of computer 
vision on safety performance has been limited. The positive impacts 
cannot be overestimated and individuals’ and organizations’ percep
tions of the technologies must be taken into account. From a cognitive 
behavior science perspective, worker behaviors are shaped by their at
titudes, beliefs, norms, and values. It remains an open question as to how 
computer vision affects workers’ mental processes and eventually their 
behavior on site. Another interesting issue is the relationship between 
information technology (e.g., computer vision) and safety culture. Pre
vious studies have suggested that technologies can penetrate organiza
tional culture (Hill, 1988). Although safety culture has its roots in 
organizational culture, it is not clear that how computer vision tech
nologies impact safety culture in construction projects. 

6. Conclusions 

This paper reviewed the state-of-the-art in computer vision devel
opment and applications in the construction industry from a health and 
safety perspective. It categorizes computer vision studies in the con
struction industry based on a three-level development framework: Level 
1 Detection, recognition, and tracking, Level 2 Assessment, and Level 3 
Prediction. The three-level development framework was designed to 
classify the complexity and difficulty of existing computer vision ap
plications. Results indicated that the majority of past efforts were 
focused on Level 1. A wide range of construction project objects can be 
recognized and tracked. Recent deep learning techniques have signifi
cantly improved recognition and tracking performance. In addition, 
efforts were made to recognize human and equipment behavior at 
different complexity levels, from recognizing simple pose to complex 
interactions and events. However, research that is focused on recog
nizing unsafe behavior has been limited. 

There are even fewer studies that were aimed at developing vision- 
based safety assessment and prediction systems. Such a current distri
bution situation is understandable, considering that there are still a 
number of unsolved technical issues (e.g., viewpoints, occlusion, light, 
etc.) that pose significant challenges at Level 1. An investigation of the 
theoretical implications of computer vision for health and safety reveals 
that it has strong links to safety research traditions, including safety 
management system, behavior-based safety program, and safety culture. 

It is clear that computer vision technologies can be applied to 
enhance current safety management systems by improving the efficiency 
of hazard identification and lifting the situation awareness of workers. 
Future research can be made to recognize more safety behaviors so that 
computer vision techniques can be integrated into behavior-based safety 
programs to reduce the reliance on manual observation and analysis. 
Developing vision-based safety culture sensing systems is an interesting 
research area to explore. Interdisciplinary efforts among social science, 
behavior science, safety science, and computer vision are needed to 
measure and monitor safety culture using computer vision. Such a move 
would significantly impact the digital transformation in construction 
health and safety management and improve safety performance. The 
suggested research directions are largely theory-oriented. However, it 
should be noted that the theoretical challenges involved in the health 
and safety domain are closely related to technical challenges in the 
computer vision community. This encourages more collaboration be
tween researchers in these two domains. 
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